
Analysis of LIS Algorithms and Blockchain

Transaction Validation: Precision and

Performance Insights

Niccolò Mascaro
n.mascaro@gmx.com

October 25, 2024

Abstract

This paper presents a comparative analysis of two approaches to solv-
ing the Longest Increasing Subsequence (LIS) problem: the traditional
dynamic programming method with a time complexity of O(n2) and an
optimized method employing binary search with a time complexity of
O(n logn). Through extensive experimentation on various types of input
sequences, the study evaluates both performance metrics and the nature
of the subsequences generated by each algorithm. The results demon-
strate significant execution time improvements in the optimized approach
and reveal that different algorithms may produce distinct yet valid LIS re-
sults under certain conditions. These insights are particularly relevant for
applications requiring both efficiency and consistency, such as blockchain
transaction validation and other real-world systems. The results of this
study have been published in a public repository, which can be accessed
at https://github.com/mascarock/lis-study.

1 Introduction

The Longest Increasing Subsequence (LIS) problem is a fundamental challenge
in computer science and combinatorics. Given an array of integers, the objective
is to identify the longest subsequence where the elements are strictly increasing.
The LIS problem has applications in various domains, including bioinformatics,
pattern recognition, financial analytics, and machine learning.

For example, consider the following series of numbers:

Remove the fewest possible numbers such that the sequence remains
in increasing order: [9, 44, 32, 12, 7, 45, 31, 98, 35, 41, 8, 20, 27, 32,
83, 64, 61, 28, 39, 93, 29, 92, 17].

In this case, one possible longest increasing subsequence is: [9, 12,
31, 35, 41, 83, 93].

1

mailto:n.mascaro@gmx.com
https://github.com/mascarock/lis-study

This study provides a comprehensive analysis of two prevalent LIS algo-
rithms, evaluating their performance and the characteristics of their outputs
across different input scenarios.

2 Methods

The algorithms discussed in this paper have been implemented in Python. Below
are the implementations for both approaches used in our analysis.

2.1 Dynamic Programming Approach — O(n2)

The following Python code implements the traditional dynamic programming
approach [1]:

First approach - O(n^2)

def find_longest_increasing_subsequence(arr):

n = len(arr)

dp[i] stores the length of the longest subsequence

↪→ ending at arr[i]

dp = [1] * n

prev[i] stores the index of the previous element in

↪→ the subsequence

prev = [-1] * n

Find the length of the longest subsequence

for i in range(1, n):

for j in range(i):

if arr[i] > arr[j] and dp[i] < dp[j] + 1:

dp[i] = dp[j] + 1

prev[i] = j

Find the index of the last element of the longest

↪→ subsequence

max_length = max(dp)

max_index = dp.index(max_length)

Reconstruct the subsequence

result = []

while max_index != -1:

result.append(arr[max_index])

max_index = prev[max_index]

return result [:: -1] # Reverse the list to get the

↪→ correct order

Example usage

numbers = [9, 44, 32, 12, 7, 45, 31, 98, 35, 41, 8, 20, 27,

↪→ 32, 83, 64, 61, 28, 39, 93, 29, 92, 17]

result = find_longest_increasing_subsequence(numbers)

2

print("Longest␣Increasing␣Subsequence:", result)

2.2 Dynamic Programming with Binary Search— O(n log n)

The following Python code implements the optimized approach using binary
search [1]:

import logging

from bisect import bisect_left

Second approach - O(n log n)

def find_longest_increasing_subsequence_optimized(arr):

n = len(arr)

if n == 0:

logging.info("The␣input␣list␣is␣empty.")

return []

’tails ’ to store the smallest tail of all increasing

↪→ subsequences with length i+1

tails = []

prev = [-1] * n

indices = []

for i in range(n):

pos = bisect_left(tails , arr[i])

if pos == len(tails):

tails.append(arr[i])

indices.append(i)

else:

tails[pos] = arr[i]

indices[pos] = i

prev[i] = indices[pos - 1] if pos > 0 else -1

Reconstruct the LIS

result = []

k = indices[len(tails) - 1]

while k >= 0:

result.append(arr[k])

k = prev[k]

return result [:: -1]

Example usage

numbers = [9, 44, 32, 12, 7, 45, 31, 98, 35, 41, 8, 20, 27,

↪→ 32, 83, 64, 61, 28, 39, 93, 29, 92, 17]

result_optimized =

↪→ find_longest_increasing_subsequence_optimized(numbers)

print("Longest␣Increasing␣Subsequence␣(Optimized):",

↪→ result_optimized)

3

3 Results

The experiments were conducted on various types of input lists to evaluate
both the performance and the qualitative differences in the Longest Increasing
Subsequences generated by each algorithm. The input types included:

• Random List: The input list contains random values.

• Sorted List: The input list is sorted in ascending order.

• Reversed List: The input list is sorted in descending order.

• Constant Values: The input list has all identical values.

• Alternating Peaks: The input alternates between low and high values.

• Zigzag: The input list rises and falls in a zigzag pattern.

3.1 Performance Metrics

Figure 1 illustrates the execution time of both algorithms across varying input
sizes. As anticipated, the optimized O(n log n) approach significantly outper-
forms the traditional O(n2) method, especially as the input size increases. This
performance gain underscores the practicality of the optimized approach for
large-scale applications.

Figure 1: Time Complexity Comparison: O(n2) vs. O(n log n)

4

3.2 Qualitative Analysis of LIS Outputs

The experiments reveal that different algorithms may produce different LIS
results even when the length of the subsequences is identical. The following
observations were made across various input types:

• Random List:

– Optimized algorithm output: [1, 13, 21, 26, 61, 93]

– O(n2) approach output: [41, 54, 69, 75, 89, 93]

• Sorted List: Both algorithms correctly identify the entire list as the LIS.

• Reversed List: Both algorithms determine that the longest increasing
subsequence is a single element, though different elements may be selected.

• Constant Values: Both algorithms identify that the LIS consists of a
single repeated value.

• Alternating Peaks: Both algorithms successfully identify the same LIS,
demonstrating robustness in fluctuating input patterns.

• Zigzag:

– Optimized algorithm output: LIS with small increments.

– O(n2) approach output: Slightly different subsequence due to itera-
tive nature.

These variations indicate that while both algorithms are capable of identify-
ing a valid LIS, their internal mechanisms lead to different valid outputs under
certain conditions. Specifically, the optimized O(n log n) method tends to se-
lect smaller values earlier in the sequence, potentially resulting in different LIS
compared to the O(n2) approach.

4 Discussion

The Longest Increasing Subsequence (LIS) problem can be addressed using var-
ious algorithmic strategies, each presenting distinct trade-offs in terms of time
complexity and the nature of the subsequences produced. This study com-
pares the traditional O(n2) dynamic programming approach with an optimized
O(n log n) method that incorporates binary search.

4.1 Dynamic Programming Approach

The traditional dynamic programming approach meticulously evaluates all pos-
sible subsequences to determine the longest increasing one. By maintaining a
dp[] array where each element dp[i] represents the length of the LIS ending
at position i, the algorithm ensures that all potential subsequences are con-
sidered [1]. However, this exhaustive evaluation results in a quadratic time
complexity, making it less efficient for large input sizes.

5

4.2 Dynamic Programming with Binary Search

The optimized approach leverages binary search to maintain an auxiliary tails[]
array, where each element signifies the smallest possible tail of an increasing
subsequence of a given length [1]. This method significantly reduces the time
complexity to O(n log n), enhancing performance for larger datasets. However,
the experiments indicate that while this approach is more efficient, it may pro-
duce different valid LIS results compared to the traditional method due to its
tendency to choose smaller elements earlier in the sequence.

4.3 Implications of Different LIS Outputs

The ability of different algorithms to produce distinct LIS results of the same
length has practical implications:

• Consistency in Applications: In systems where consistency of the LIS
output is crucial—such as blockchain transaction validation—choosing an
algorithm that provides deterministic results is important. The O(n2) ap-
proach, with its exhaustive search, may offer more predictable subsequence
generation compared to the optimized method.

• Efficiency vs. Predictability: While the optimized O(n log n) ap-
proach excels in efficiency, especially with large inputs, it may not always
provide the same subsequence as the traditional method. This trade-off
must be considered based on the application’s requirements.

• Handling Multiple LIS: Given that multiple LIS of the same length can
exist for a single input, algorithms differ in their selection process. The
optimized approach’s preference for smaller elements can be advantageous
or detrimental depending on the context [4].

4.4 Applications in Blockchain Environments

Integrating LIS algorithms within blockchain frameworks, particularly in Ethereum
Virtual Machine (EVM) environments, presents opportunities to enhance trans-
action sequence validation and system efficiency.

Optimizing Transaction Sequence Validation: Implementing the op-
timized O(n log n) LIS algorithm can streamline the validation of transaction
sequences in smart contracts. For example, in decentralized exchanges (DEXs),
ensuring transactions are processed in a logically increasing order based on
timestamps or IDs can be efficiently managed using LIS, reducing computa-
tional overhead and gas consumption.

Enhancing Scalability and Efficiency: As blockchain networks scale,
the demand for efficient algorithms becomes paramount. The optimized LIS
approach can contribute to scalable solutions by minimizing the number of
comparisons and leveraging its logarithmic time complexity, thereby facilitating
faster transaction processing and lower operational costs.

6

Fraud Detection and Security Enhancements: Analyzing transaction
patterns with LIS can aid in identifying irregularities indicative of fraudulent
activities. This proactive approach can strengthen the security mechanisms
of blockchain networks, fostering greater trust and reliability in decentralized
applications.

Real-World Implementation and Testing: Future research should fo-
cus on the practical implementation of LIS algorithms within existing blockchain
platforms. Empirical studies and performance evaluations in real-world EVM
environments will provide insights into the benefits and challenges of such in-
tegrations, guiding the development of optimized smart contracts that leverage
LIS for enhanced performance and security.

5 Conclusion

This analysis confirms that the optimized O(n log n) approach is more suitable
for solving the LIS problem, particularly for larger input sizes, due to its supe-
rior execution time. However, the study also highlights that different algorithms
may produce distinct yet valid LIS results, emphasizing the importance of se-
lecting the appropriate method based on application-specific requirements for
consistency and efficiency.

6 Further Research

While this paper provides a comprehensive analysis and optimization of algo-
rithms for solving the Longest Increasing Subsequence (LIS) problem, several
avenues remain open for future investigation. Exploring these areas can enhance
the applicability and efficiency of LIS algorithms in various domains, including
emerging technologies such as blockchain.

6.1 Exploration of LIS in Other Emerging Technologies

Beyond blockchain, the LIS algorithm holds potential applications in other
cutting-edge fields such as artificial intelligence, bioinformatics, and financial
analytics. Investigating these applications can lead to innovative solutions that
leverage the algorithm’s efficiency and versatility.

6.2 Algorithmic Enhancements and Hybrid Approaches

Further research could explore hybrid approaches that combine LIS with other
optimization techniques. Integrating machine learning models or parallel pro-
cessing strategies with LIS algorithms may yield even greater performance im-
provements, opening new possibilities for tackling complex computational prob-
lems.

7

7 References

References

[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Intro-
duction to Algorithms. MIT Press.

[2] Knuth, D. E. (1973). The Art of Computer Programming, Vol. 3: Sorting
and Searching. Addison-Wesley.

[3] Wikipedia. (2024). Longest increasing subsequence. Retrieved from https:

//en.wikipedia.org/wiki/Longest_increasing_subsequence

[4] CP-Algorithms. (2024). Longest Increasing Subsequence. Retrieved
from https://cp-algorithms.com/sequences/longest-increasing-

subsequence.html

[5] Baeldung. (2024). Longest Increasing Subsequence Using Dynamic
Programming. Retrieved from https://www.baeldung.com/cs/longest-

increasing-subsequence

8

https://en.wikipedia.org/wiki/Longest_increasing_subsequence
https://en.wikipedia.org/wiki/Longest_increasing_subsequence
https://cp-algorithms.com/sequences/longest-increasing-subsequence.html
https://cp-algorithms.com/sequences/longest-increasing-subsequence.html
https://www.baeldung.com/cs/longest-increasing-subsequence
https://www.baeldung.com/cs/longest-increasing-subsequence

	Introduction
	Methods
	Dynamic Programming Approach — O(n^2)
	Dynamic Programming with Binary Search — O(n log n)

	Results
	Performance Metrics
	Qualitative Analysis of LIS Outputs

	Discussion
	Dynamic Programming Approach
	Dynamic Programming with Binary Search
	Implications of Different LIS Outputs
	Applications in Blockchain Environments

	Conclusion
	Further Research
	Exploration of LIS in Other Emerging Technologies
	Algorithmic Enhancements and Hybrid Approaches

	References

